Resilienz in städtische Verkehrssystemen: Eine Herausforderung im Kontext des Klimawandels
DOI:
https://doi.org/10.34647/jmv.nr24.id199Schlagworte:
Klimawandel, Verkehrsnetz, Resilienz, urbane Mobilität, Wirkungsbewertung, MinderungsstrategieAbstract
Der Klimawandel verstärkt extreme Wetterereignisse und stellt eine ernsthafte Herausforderung für die Funktionalität und Resilienz urbaner Verkehrssysteme dar. Die vorliegende Studie definiert den Begriff von Resilienz bei urbanen Systemen, entwickelt Bewertungsansätze für Klimaeffekte und beschreibt Anpassungsstrategien zur Minderung von Störungen. Am Beispiel von Duisburg, einer kreisfreien Großstadt, die an der Mündung der Ruhr in den Rhein im Ruhrgebiet liegt, werden die Auswirkungen der Klimasignale Starkregen, Hitzewellen und Niedrigwasser auf den Personen- und Güterverkehr analysiert und mit einem Resilienzindex quantifiziert. Die Ergebnisse liefern Erkenntnisse für politische Entscheidungsträger und Planer, die eine Steigerung der Klimaresistenz städtischer Verkehrsnetze anstreben.
Literaturhinweise
Balal, E., Valdez, G., Miramontes, J., & Cheu, R. L. (2019). Comparative evaluation of measures for urban highway network resilience due to traffic incidents. International Journal of Transportation Science and Technology, 8(3), 304-317. https://doi.org/https://doi.org/10.1016/j.ijtst.2019.05.001
https://doi.org/10.1016/j.ijtst.2019.05.001
Batur, I., Alhassan, V. O., Chester, M. V., Polzin, S. E., Chen, C., Bhat, C. R., & Pendyala, R. M. (2024). Understanding how extreme heat impacts human activity-mobility and time use patterns. Transportation Research Part D: Transport and Environment, 136, 104431. https://doi.org/https://doi.org/10.1016/j.trd.2024.104431
https://doi.org/10.1016/j.trd.2024.104431
Bedoya-Maya, F., Shobayo, P., Beckers, J., & van Hassel, E. (2024). The impact of critical water levels on container inland waterway transport. Transportation Research Part D: Transport and Environment, 131, 104190. https://doi.org/https://doi.org/10.1016/j.trd.2024.104190
https://doi.org/10.1016/j.trd.2024.104190
Böcker, L., Dijst, M., & Faber, J. (2016). Weather, transport mode choices and emotional travel experiences. Transportation Research Part A: Policy and Practice, 94, 360-373. https://doi.org/https://doi.org/10.1016/j.tra.2016.09.021
https://doi.org/10.1016/j.tra.2016.09.021
Böcker, L., Prillwitz, J., & Dijst, M. (2013). Climate change impacts on mode choices and travelled distances: a comparison of present with 2050 weather conditions for the Randstad Holland. Journal of Transport Geography, 28, 176-185. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2012.11.004
https://doi.org/10.1016/j.jtrangeo.2012.11.004
Böcker, L., Priya Uteng, T., Liu, C., & Dijst, M. (2019). Weather and daily mobility in international perspective: A cross-comparison of Dutch, Norwegian and Swedish city regions. Transportation Research Part D: Transport and Environment, 77, 491-505. https://doi.org/https://doi.org/10.1016/j.trd.2019.07.012
https://doi.org/10.1016/j.trd.2019.07.012
Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733-752. https://doi.org/10.1193/1.1623497
https://doi.org/10.1193/1.1623497
Calabrò, G., Araldo, A., Oh, S., Seshadri, R., Inturri, G., & Ben-Akiva, M. (2023). Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation. Transportation Research Part A: Policy and Practice, 171, 103643. https://doi.org/https://doi.org/10.1016/j.tra.2023.103643
https://doi.org/10.1016/j.tra.2023.103643
Chalkiadakis, C., Perdikouris, A., & Vlahogianni, E. I. (2022). Urban road network resilience metrics and their relationship: Some experimental findings. Case Studies on Transport Policy, 10(4), 2377-2392. https://doi.org/https://doi.org/10.1016/j.cstp.2022.10.013
https://doi.org/10.1016/j.cstp.2022.10.013
Coles, D., Yu, D., Wilby, R. L., Green, D., & Herring, Z. (2017). Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK. Journal of Hydrology, 546, 419-436. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.12.013
https://doi.org/10.1016/j.jhydrol.2016.12.013
Crespi, A., Renner, K., Zebisch, M., Schauser, I., Leps, N., & Walter, A. (2023). Analysing spatial patterns of climate change: Climate clusters, hotspots and analogues to support climate risk assessment and communication in Germany. Climate Services, 30, 100373. https://doi.org/https://doi.org/10.1016/j.cliser.2023.100373
https://doi.org/10.1016/j.cliser.2023.100373
Deublein, M., Roth, F., Bruns, F., & Zulauf, C. (2021). Reaktions- und Wiederherstellungsprozess für die Straßeninfrastruktur nach disruptiven Ereignissen, BASt-Forschungsbericht FE 89.0330.
Deutsche-Wetterdienst. (2025). https://www.dwd.de/.
Diab, E., & Shalaby, A. (2020). Metro transit system resilience: Understanding the impacts of outdoor tracks and weather conditions on metro system interruptions. International Journal of Sustainable Transportation, 14(9), 657-670. https://doi.org/10.1080/15568318.2019.1600174
https://doi.org/10.1080/15568318.2019.1600174
Ebner von Eschenbach, A. D., Helms, M., Maurer, T., Nilson, E., Hämmerle, M., Wurms, S., & Orlovius, A. (2022). Untersuchung wasserwirtschaftlicher Optionen zur Sicherstellung zuverlässig kalkulierbarer Transportbedingungen am Rhein bei Niedrigwasser. BfG-Bericht-2100, Koblenz. https://doi.bafg.de/BfG/2022/BfG-2100.pdf
Esmalian, A., Yuan, F., Rajput, A. A., Farahmand, H., Dong, S., Li, Q., Gao, X., Fan, C., Lee, C.-C., Hsu, C.-W., Patrascu, F. I., & Mostafavi, A. (2022). Operationalizing resilience practices in transportation infrastructure planning and project development. Transportation Research Part D: Transport and Environment, 104, 103214. https://doi.org/https://doi.org/10.1016/j.trd.2022.103214
https://doi.org/10.1016/j.trd.2022.103214
FloodAreaHPC. (2025). https://www.geomer.de/software/floodarea.html.
Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience thinking: integrating resilience, adaptability and transformability. Ecology and society, 15(4).
https://doi.org/10.5751/ES-03610-150420
Galich, A., & Nieland, S. (2023). The Impact of Weather Conditions on Mode Choice in Different Spatial Areas. Future Transportation, 3(3), 1007-1028. https://www.mdpi.com/2673-7590/3/3/56
https://doi.org/10.3390/futuretransp3030056
Gonçalves, L. A. P. J., & Ribeiro, P. J. G. (2020). Resilience of urban transportation systems. Concept, characteristics, and methods. Journal of Transport Geography, 85, 102727. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2020.102727
https://doi.org/10.1016/j.jtrangeo.2020.102727
Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology, Evolution, and Systematics, 4(Volume 4, 1973), 1-23. https://doi.org/https://doi.org/10.1146/annurev.es.04.110173.000245
https://doi.org/10.1146/annurev.es.04.110173.000245
Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47-61. https://doi.org/https://doi.org/10.1016/j.ress.2015.08.006
https://doi.org/10.1016/j.ress.2015.08.006
Kahlenborn, W., Porst, L., Voss, M., Fritsch, U., Renner, K., Zebisch, M., Wolf, M., Schönthaler, K., & Schauser, I. (2021). Climate impact and risk assessment 2021 for Germany. Summary.
Kötter, T., Weiß, D., Heyn, T., Grade, J., & Lennartz, G. (2018). Stresstest Stadt - wie resilient sind unsere Städte? Unsicherheiten der Stadtentwicklung identifizieren, analysieren und bewerten. Bundesinstitut für Bau-, Stadt- und Raumforschung im Bundesamt für Bauwesen und Raumordnung
Lu, Q.-L., Sun, W., Dai, J., Schmöcker, J.-D., & Antoniou, C. (2024). Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes. Reliability Engineering & System Safety, 247, 110095. https://doi.org/https://doi.org/10.1016/j.ress.2024.110095
https://doi.org/10.1016/j.ress.2024.110095
Markolf, S. A., Hoehne, C., Fraser, A., Chester, M. V., & Underwood, B. S. (2019). Transportation resilience to climate change and extreme weather events - Beyond risk and robustness. Transport Policy, 74, 174-186. https://doi.org/https://doi.org/10.1016/j.tranpol.2018.11.003
https://doi.org/10.1016/j.tranpol.2018.11.003
Mattsson, L.-G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems - A discussion of recent research. Transportation Research Part A: Policy and Practice, 81, 16-34. https://doi.org/https://doi.org/10.1016/j.tra.2015.06.002
https://doi.org/10.1016/j.tra.2015.06.002
Mayer, G., Großmann, S., Zulauf, C., Roth, F., Deublein, M., Kohl, B., Kammerer, H., & Dahl, A. (2020). Resilienz der Straßenverkehrsinfrastruktur: Stand der Forschung und Potenziale im Management von außergewöhnlichen Ereignissen. Schlussbericht zum Forschungsprojekt FE 01.0199/2017/ARB, Bundesanstalt für Straßenwesen (BASt), Bergisch Gladbach (unveröffentlicht).
McDaniels, T., Chang, S., Cole, D., Mikawoz, J., & Longstaff, H. (2008). Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation. Global Environmental Change, 18(2), 310-318. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2008.03.001
https://doi.org/10.1016/j.gloenvcha.2008.03.001
Melkonyan, A., Hollmann, R., Gruchmann, T., & Daus, D. (2024). Climate mitigation and adaptation strategies in the transport sector: An empirical investigation in Germany. Transportation Research Interdisciplinary Perspectives, 25, 101102. https://doi.org/https://doi.org/10.1016/j.trip.2024.101102
https://doi.org/10.1016/j.trip.2024.101102
Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation Research Part D: Transport and Environment, 55, 67-81. https://doi.org/https://doi.org/10.1016/j.trd.2017.06.020
https://doi.org/10.1016/j.trd.2017.06.020
Prognos AG. (2025). https://www.prognos.com/de.
R2K-Klim+. (2025). https://r2k-klim.net/.
Reed, D. A., Kapur, K. C., & Christie, R. D. (2009). Methodology for Assessing the Resilience of Networked Infrastructure. IEEE Systems Journal, 3(2), 174-180. https://doi.org/10.1109/JSYST.2009.2017396
https://doi.org/10.1109/JSYST.2009.2017396
Roth, F., Zulauf, C., Rothenfluh, M., Dahl, A., Bruns, F., Brunner, R., & Roth, S. (2023). Optimierung und Weiterentwicklung von Handlungshilfen zur Resilienzbewertung der Verkehrsinfrastruktur, BASt-Projekt FE69.00005.
Salvo, G., Karakikes, I., Papaioannou, G., Polydoropoulou, A., Sanfilippo, L., & Brignone, A. (2025). Enhancing urban resilience: Managing flood-induced disruptions in road networks. Transportation Research Interdisciplinary Perspectives, 31, 101383. https://doi.org/https://doi.org/10.1016/j.trip.2025.101383
https://doi.org/10.1016/j.trip.2025.101383
Serdar, M. Z., Koç, M., & Al-Ghamdi, S. G. (2022). Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment Methods. Sustainable Cities and Society, 76, 103452. https://doi.org/https://doi.org/10.1016/j.scs.2021.103452
https://doi.org/10.1016/j.scs.2021.103452
Sharif, M., & Wittowsky, D. (2025). Welche Effekte haben klimatische Extremereignisse auf das Verkehrssystem - ein Ansatz zur Resilienzbewertung am Beispiel der Stadt Duisburg. In H. Proff (Ed.), New Players in Mobility: Technische und betriebswirtschaftliche Aspekte (pp. 327-344). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-46485-1_21
https://doi.org/10.1007/978-3-658-46485-1_21
Sun, W., Paolo, B., & and Davison, B. D. (2020). Resilience metrics and measurement methods for transportation infrastructure: the state of the art. Sustainable and Resilient Infrastructure, 5(3), 168-199. https://doi.org/10.1080/23789689.2018.1448663
https://doi.org/10.1080/23789689.2018.1448663
Umweltbundesamt. (2025). Umweltindikatoren. https://www.umweltbundesamt.de/.
Wang, N., Wu, M., & Yuen, K. F. (2024). Modelling and assessing long-term urban transportation system resilience based on system dynamics. Sustainable Cities and Society, 109, 105548. https://doi.org/https://doi.org/10.1016/j.scs.2024.105548

Downloads
Veröffentlicht
Ausgabe
Rubrik
Lizenz
Copyright (c) 2025 Mohammad Sharif, Dirk Wittowsky

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Nicht-kommerziell - Keine Bearbeitungen 4.0 International.